A Study on the Non-homogeneous Ternary Quadratic Diophantine Equation

$$
4\left(x^{2}+y^{2}\right)-7 x y+x+y+1=31 z^{2}
$$

S. Vidhyalakshmi ${ }^{1}$, T. Mahalakshmi ${ }^{2}$, M.A. Gopalan ${ }^{3}$
${ }^{1,2}$ Assistant Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University,Trichy-620 002,Tamil Nadu, India. ${ }^{3}$ Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy-620 002, Tamil Nadu, India.

ABSTRACT

The Non-homogeneous ternary quadratic Diophantine equation
$4\left(x^{2}+y^{2}\right)-7 x y+x+y+1=31 z^{2}$ is studied for finding its non - zero distinct integer solutions.
KEY WORDS: Non-homogeneous, Ternary quadratic equation, Integral solutions .

I. INTRODUCTION

Ternary quadratic equations are rich in variety [14, 17-20].For an extensive review of sizable literature and various problems, one may refer [516]. In this communication, we consider yet another interesting Non- homogeneous ternary quadratic equation
$4\left(x^{2}+y^{2}\right)-7 x y+x+y+1=31 z^{2} \quad$ and obtain infinitely many non-trivial integral solutions.

II. METHOD OF ANALYSIS

Let $\mathrm{X}, \mathrm{y}, \mathrm{Z}$ be any three non-zero distinct integers such that

$$
\begin{equation*}
4\left(x^{2}+y^{2}\right)-7 x y+x+y+1=31 z^{2} \tag{1}
\end{equation*}
$$

Substituting

$$
\left.\begin{array}{l}
\mathrm{x}=\mathrm{u}+\mathrm{v} \tag{2}\\
\mathrm{y}=\mathrm{u}-\mathrm{v}
\end{array}\right\}
$$

in (1), we have
$\mathrm{U}^{2}+15 \mathrm{v}^{2}=31 \mathrm{z}^{2}$
where

$$
\begin{equation*}
\mathrm{u}+1=\mathrm{U} \tag{3}
\end{equation*}
$$

(3) is solved through different methods for obtaining the values of
$\mathrm{U}, \mathrm{v}, \mathrm{z}$.In view of (4) and (2), the corresponding values of X, y are obtained.
The above process is illustrated below:

METHOD-1

(3) is written in the form of ratio as

$$
\begin{equation*}
\frac{U+4 z}{(z-v)}=\frac{15(z+v)}{U-4 z}=\frac{\alpha}{\beta}, \quad \beta \neq 0 \tag{5}
\end{equation*}
$$

which is equivalent to the system of equations

$$
\begin{gathered}
\mathrm{U} \beta+\mathrm{v} \alpha+(4 \beta-\alpha) \mathrm{z}=0 \\
-\mathrm{U} \alpha+15 \mathrm{v} \beta+(4 \alpha+15 \beta) \mathrm{z}=0
\end{gathered}
$$

Employing the method of cross multiplication and simplifying, we have

$$
\begin{align*}
& U=4 \alpha^{2}-60 \beta^{2}+30 \alpha \beta \tag{6}\\
& v=\alpha^{2}-15 \beta^{2}-8 \alpha \beta \tag{7}\\
& z=\alpha^{2}+15 \beta^{2} \tag{8}
\end{align*}
$$

Using (6) in (4) we have

$$
\begin{equation*}
\mathrm{u}=4 \alpha^{2}-60 \beta^{2}+30 \alpha \beta-1 \tag{9}
\end{equation*}
$$

Using (7) and (9) in (2), we have

$$
\left.\begin{array}{l}
x=5 \alpha^{2}-75 \beta^{2}+22 \alpha \beta-1 \tag{10}\\
y=3 \alpha^{2}-45 \beta^{2}+38 \alpha \beta-1
\end{array}\right\}
$$

Thus (8) and (10) represent the non-zero distinct integer solution to (1).

NOTE:

In addition to (5), (3) is written in the form of ratio as below:
(i) $\frac{U+4 z}{15(z-v)}=\frac{(z+v)}{U-4 z}=\frac{\alpha}{\beta}, \beta \neq 0$
(ii) $\frac{\mathrm{U}+4 \mathrm{z}}{5(\mathrm{z}-\mathrm{v})}=\frac{3(\mathrm{z}+\mathrm{v})}{\mathrm{U}-4 \mathrm{z}}=\frac{\alpha}{\beta}, \beta \neq 0$
(iii) $\frac{\mathrm{U}+4 \mathrm{z}}{3(\mathrm{z}-\mathrm{v})}=\frac{5(\mathrm{z}+\mathrm{v})}{\mathrm{U}-4 \mathrm{z}}=\frac{\alpha}{\beta}, \beta \neq 0$

Following the procedure as above, the corresponding integer solutions to (1) thus obtained from each of the above cases are exhibited below: Solutions from (i):
$\mathrm{x}=75 \alpha^{2}-5 \beta^{2}+22 \alpha \beta-1$
$y=45 \alpha^{2}-3 \beta^{2}+38 \alpha \beta-1$
$\mathrm{z}=15 \alpha^{2}+\beta^{2}$
Solutions from (ii):

$$
\begin{aligned}
& \mathrm{x}=25 \alpha^{2}-15 \beta^{2}+22 \alpha \beta-1 \\
& \mathrm{y}=15 \alpha^{2}-9 \beta^{2}+38 \alpha \beta-1 \\
& \mathrm{z}=5 \alpha^{2}+3 \beta^{2}
\end{aligned}
$$

Solutions from (iii):

$$
\begin{aligned}
& \mathrm{x}=15 \alpha^{2}-25 \beta^{2}+22 \alpha \beta-1 \\
& \mathrm{y}=9 \alpha^{2}-15 \beta^{2}+38 \alpha \beta-1 \\
& \mathrm{z}=3 \alpha^{2}+5 \beta^{2}
\end{aligned}
$$

METHOD 2:
Introducing the linear transformations
$\mathrm{z}=\mathrm{X}+15 \mathrm{~T}, \quad \mathrm{v}=\mathrm{X}+31 \mathrm{~T}, \mathrm{U}=4 \mathrm{~W}$
$\mathrm{X}^{2}=465 \mathrm{~T}^{2}+\mathrm{W}^{2}$
which is satisfied by

$$
\left.\begin{array}{l}
X=465 r^{2}+s^{2} \tag{12}\\
T=2 r s \\
W=465 r^{2}-s^{2}
\end{array}\right\}
$$

Using (13) in (11), we get

$$
\begin{gather*}
z=465 r^{2}+s^{2}+30 r s \tag{14}\\
v=465 r^{2}+s^{2}+62 r s \tag{15}\\
U=4\left(465 r^{2}-s^{2}\right) \tag{16}
\end{gather*}
$$

In view of (4), note that

$$
\begin{equation*}
\mathrm{u}=1860 \mathrm{r}^{2}-4 \mathrm{~s}^{2}-1 \tag{17}
\end{equation*}
$$

Using (15) and (17) in (2), we have
$\left.\begin{array}{l}x=2325 r^{2}-3 s^{2}+62 r s-1 \\ y=1395 r^{2}-5 s^{2}-62 r s-1\end{array}\right\}$
Thus (14) and (18) represent the non-zero distinct integer solutions to (1).
Further, (12) can be expressed as the system of double equations as shown in Table 1 below:

Table 1: System of double equations

System	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
$\mathrm{X}+\mathrm{W}$	465	$\mathrm{~T}^{2}$	$5 \mathrm{~T}^{2}$	$15 \mathrm{~T}^{2}$	$31 \mathrm{~T}^{2}$	$155 \mathrm{~T}^{2}$	465 T	93 T	31 T	155 T
$\mathrm{X}-\mathrm{W}$	T^{2}	465	93	31	15	3	T	5 T	15 T	3 T

For simplicity and brevity, the integer solutions to (1) obtained on solving each of the above system of equations are exhibited in Table 2 below:

Table 2: Solutions

System	\mathbf{x}	\mathbf{y}	\mathbf{z}
$\mathbf{1}$	$-6 \mathrm{k}^{2}+56 \mathrm{k}+1191$	$-10 \mathrm{k}^{2}-72 \mathrm{k}+663$	$2 \mathrm{k}^{2}+32 \mathrm{k}+248$
$\mathbf{2}$	$10 \mathrm{k}^{2}+72 \mathrm{k}-665$	$6 \mathrm{k}^{2}-56 \mathrm{k}-1193$	$2 \mathrm{k}^{2}+32 \mathrm{k}+248$
$\mathbf{3}$	$50 \mathrm{k}^{2}+112 \mathrm{k}-97$	$30 \mathrm{k}^{2}-32 \mathrm{k}-257$	$10 \mathrm{k}^{2}+40 \mathrm{k}+64$
$\mathbf{4}$	$150 \mathrm{k}^{2}+212 \mathrm{k}+21$	$90 \mathrm{k}^{2}+28 \mathrm{k}-87$	$30 \mathrm{k}^{2}+60 \mathrm{k}+38$
$\mathbf{5}$	$310 \mathrm{k}^{2}+372 \mathrm{k}+85$	$186 \mathrm{k}^{2}+124 \mathrm{k}-23$	$62 \mathrm{k}^{2}+92 \mathrm{k}+38$
$\mathbf{6}$	$1550 \mathrm{k}^{2}+1612 \mathrm{k}+413$	$930 \mathrm{k}^{2}+868 \mathrm{k}+193$	$310 \mathrm{k}^{2}+340 \mathrm{k}+94$
$\mathbf{7}$	$1192 \mathrm{~T}-1$	$664 \mathrm{~T}-1$	248 T
$\mathbf{8}$	$256 \mathrm{~T}-1$	$96 \mathrm{~T}-1$	64 T
$\mathbf{9}$	$86 \mathrm{~T}-1$	$-22 \mathrm{~T}-1$	38 T
$\mathbf{1 0}$	$414 \mathrm{~T}-1$	$194 \mathrm{~T}-1$	94 T

METHOD 3:

Write z as

$$
\begin{equation*}
\mathrm{z}=\alpha^{2}+15 \beta^{2} \tag{19}
\end{equation*}
$$

Also, 31 is written as

$$
\begin{equation*}
31=(4+\mathrm{i} \sqrt{15})(4-\mathrm{i} \sqrt{15}) \tag{20}
\end{equation*}
$$

Substituting (19) and (20) in (3) and employing the factorization method, define

$$
(\mathrm{U}+\mathrm{i} \sqrt{15} \mathrm{v})=(4+\mathrm{i} \sqrt{15})(\alpha+\mathrm{i} \sqrt{15} \beta)^{2}
$$

On equating the real and imaginary parts, we have

$$
\begin{align*}
& \mathrm{U}=4 \alpha^{2}-60 \beta^{2}-30 \alpha \beta \tag{21}\\
& \mathrm{v}=\alpha^{2}-15 \beta^{2}+8 \alpha \beta \tag{22}
\end{align*}
$$

Using (21) in (4) we have

$$
\begin{equation*}
\mathrm{u}=4 \alpha^{2}-60 \beta^{2}-30 \alpha \beta-1 \tag{23}
\end{equation*}
$$

Using (22) and (23) in (2) we have

$$
\left.\begin{array}{l}
x=5 \alpha^{2}-75 \beta^{2}-22 \alpha \beta-1 \tag{24}\\
y=3 \alpha^{2}-45 \beta^{2}-38 \alpha \beta-1
\end{array}\right\}
$$

Thus (19) and (24) represent the non-zero distinct integer solutions to (1).

METHOD 4:

One may write (3) as

$$
\begin{equation*}
\mathrm{U}^{2}+15 \mathrm{v}^{2}=31 \mathrm{z}^{2} * 1 \tag{25}
\end{equation*}
$$

Write 1 as

$$
\begin{equation*}
1=\frac{(1+i \sqrt{15})(1-i \sqrt{15})}{16} \tag{26}
\end{equation*}
$$

Substituting (19), (20) and (26) in (25) and employing the factorization method, define

$$
(\mathrm{U}+\mathrm{i} \sqrt{15} \mathrm{v})=(4+\mathrm{i} \sqrt{15})(\alpha+\mathrm{i} \sqrt{15} \beta)^{2} * \frac{(1+\mathrm{i} \sqrt{15})}{4}
$$

On equating the real and imaginary parts, we have

$$
\mathrm{U}=\frac{1}{4}\left(-11 \alpha^{2}+165 \beta^{2}-150 \alpha \beta\right)
$$

$$
\begin{equation*}
\mathrm{v}=\frac{1}{4}\left(5 \alpha^{2}-75 \beta^{2}-22 \alpha \beta\right) \tag{27}
\end{equation*}
$$

Using (27) in (4) we have

$$
\mathrm{u}=\frac{1}{4}\left(-11 \alpha^{2}+165 \beta^{2}-150 \alpha \beta-4\right)
$$

(29)

Using (28) and (29) in (2) we have

$$
\left.\begin{array}{l}
\mathrm{x}=\frac{1}{4}\left(-6 \alpha^{2}+90 \beta^{2}-172 \alpha \beta-4\right) \\
\mathrm{y}=\frac{1}{4}\left(-16 \alpha^{2}+240 \beta^{2}-128 \alpha \beta-4\right) \tag{30}
\end{array}\right\}
$$

Thus (19) and (30) represent the non-zero distinct integer solutions to (1) when replacing α by 2α and β by 2β.

NOTE:

It is worth mentioning here that in addition to (26), 1 may be represented as below:
(ii) $\quad 1=\frac{(7+i 4 \sqrt{15})(7-\mathrm{i} 4 \sqrt{15})}{289}$
(iii)
(iv) $\quad 1=\frac{(7+\mathrm{i} 12 \sqrt{15})(7-\mathrm{i} 12 \sqrt{15})}{2209}$

Following the procedure presented as above, for simplicity and brevity, we present below the integer solutions to (1) for (i) to (iv).
Solutions for (i):
$x=4\left(3 \alpha^{2}-45 \beta^{2}-38 \alpha \beta\right)-1$
$y=\alpha^{2}-15 \beta^{2}-178 \alpha \beta-1$
$\mathrm{z}=4\left(\alpha^{2}+15 \beta^{2}\right)$
Solutions for (ii):
$x=17\left(-9 \alpha^{2}+135 \beta^{2}-754 \alpha \beta\right)-1$
$y=17\left(-55 \alpha^{2}+825 \beta^{2}-626 \alpha \beta\right)-1$
$z=17^{2}\left(\alpha^{2}+15 \beta^{2}\right)$
Solutions for (iii):
$x=31\left(-83 \alpha^{2}+1245 \beta^{2}-1222 \alpha \beta\right)-1$
$y=31\left(-149 \alpha^{2}+2235 \beta^{2}-758 \alpha \beta\right)-1$
$z=31^{2}\left(\alpha^{2}+15 \beta^{2}\right)$
Solutions for (iv):
$x=47\left(-97 \alpha^{2}+1455 \beta^{2}-1954 \alpha \beta\right)-1$
$y=47\left(-207 \alpha^{2}+3105 \beta^{2}-1346 \alpha \beta\right)-1$
$z=47^{2}\left(\alpha^{2}+15 \beta^{2}\right)$

III. CONCLUSION

To conclude, one may search for other patterns of solutions and their corresponding properties.

REFERENCE:

[1]. Bert Miller, "Nasty Numbers", The Mathematics Teacher, Vol-73, No.9,p.649, 1980.
[12]. Gopalan M.A., Manju Somanath and V.Sangeetha , Observations on the Ternary Quadratic Diophantine Equation $y^{2}=3 x^{2}+z^{2}$,Bessel J.Math., 2(2),101-
[2]. Bhatia .B.L and Supriya Mohanty, "Nasty Numbers and their Characterisation" Mathematical' Education, Vol-II, No.1, p. 34
[3]. Carmichael.R.D.,The theory of numbers and Diophantine Analysis, NewYork, Dover, 1959.
[4]. Dickson.L.E., History of Theory of numbers, vol.2:Diophantine Analysis, New York, Dover, 2005.
[5]. Gopalan M.A.,Manju somnath, and Vanitha.M., Integral Solutions of $k x y+m(x+y)=z^{2} \quad$, Acta Ciencia Indica, Vol 33, No. 4,1287-1290, (2007).
[6]. Gopalan M.A., Manju Somanath and V.Sangeetha,On the Ternary Quadratic Equation $\quad 5\left(x^{2}+y^{2}\right)-9 x y=19 z^{2}$,IJIRSET,Vol 2, Issue 6,2008-2010,June 2013.
[7]. Gopalan M.A., and A.Vijayashankar, Integral points on the homogeneous cone $z^{2}=2 x^{2}+8 y^{2}$,IJIRSET,Vol 2(1), 682685,Jan 2013.
[8]. Gopalan M.A., S.Vidhyalakshmi, and V.Geetha, Lattice points on the homogeneous cone $z^{2}=10 x^{2}-6 y^{2}$, IJESRT,Vol 2(2), 775-779,Feb 2013.
[9]. Gopalan M.A., S.Vidhyalakshmi and E.Premalatha , On the Ternary quadratic Diophantine equation $\quad x^{2}+3 y^{2}=7 z^{2}$,Diophantus.J.Math1(1),51-57,2012.
[10]. Gopalan M.A., S.Vidhyalakshmi and A.Kavitha , Integral points on the homogeneous cone $\quad z^{2}=2 x^{2}-7 y^{2}$,Diophantus.J.Math1(2),127-136,2012.
[11]. M.A.Gopalan and G.Sangeetha, Observations on $y^{2}=3 x^{2}-2 z^{2}$, Antarctica J.Math., 9(4),359-362,(2012).
[13]. Gopalan M.A., S.Vidhyalakshmi and E.Premalatha , On the Ternary quadratic equation $x^{2}+x y+y^{2}=12 z^{2}$,Diophantus.J.Math1(2),69-76,2012.
[14]. Gopalan M.A., S.Vidhyalakshmi and E.Premalatha, On the homogeneous quadratic equation with three unknowns $x^{2}-x y+y^{2}=\left(k^{2}+3\right) z^{2}$, Bulletin of Mathematics and Statistics Research,Vol 1(1),38-41,2013.
[15]. Meena.K, Gopalan M.A., S.Vidhyalakshmi and N.Thiruniraiselvi, Observations on the quadratic equation $x^{2}+9 y^{2}=50 z^{2}$, International Journal of Applied Research , Vol 1(2),51-53,2015.
[16]. R.Anbuselvi and S.A. Shanmugavadivu, On homogeneous Ternary quadratic
[17]. Diophantine equation $z^{2}=45 x^{2}+y^{2}$, IJERA, 7(11), 22-25, Nov 2017.
[18]. Mordell L.J., Diophantine Equations, Academic press, London (1969).
[19]. Nigel,P.Smart,The Algorithmic Resolutions of Diophantine Equations, Cambridge University Press,London 1999.
[20]. Telang, S.G.,Number Theory,Tata Mc Grawhill publishing company, New Delhi, 1996.
[21]. S. Vidhyalakshmi, T. Mahalakshmi, "A Study On The Homogeneous Cone $x^{2}+7 y^{2}=23 z^{2}$ ", International Research Journal of Engineering and Technology (IRJET), Volume 6, Issue 3, Pages 50005007, March 2019.
S. Vidhyalakshmi, et. al. "A Study on the Non-homogeneous Ternary Quadratic Diophantine Equation

$$
4\left(\mathbf{x}^{2}+y^{2}\right)-7 x y+x+y+1=31 z^{2} . " \quad \text { International Journal of Advances in }
$$

Engineering and Management (IJAEM), 2(1), 2020, pp. 55-58. Engineering and Management IJAEM ISSN: 2395-5252

IJAEM

Volume: 02 Issue: 01

DOI: 10.35629/5252
www.ijaem.net
Email id: ijaem.paper@gmail.com

